首页> 外文OA文献 >Predicting chaos for infinite dimensional dynamical systems: The Kuramoto-Sivashinsky equation, a case study
【2h】

Predicting chaos for infinite dimensional dynamical systems: The Kuramoto-Sivashinsky equation, a case study

机译:预测无穷维动力学系统的混沌:Kuramoto-Sivashinsky方程,一个案例研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The results of extensive computations are presented in order to accurately characterize transitions to chaos for the Kuramoto-Sivashinsky equation. In particular, the oscillatory dynamics in a window that supports a complete sequence of period doubling bifurcations preceding chaos is followed. As many as thirteen period doublings are followed and used to compute the Feigenbaum number for the cascade and so enable, for the first time, an accurate numerical evaluation of the theory of universal behavior of nonlinear systems, for an infinite dimensional dynamical system. Furthermore, the dynamics at the threshold of chaos exhibit a fractal behavior which is demonstrated and used to compute a universal scaling factor that enables the self-similar continuation of the solution into a chaotic regime.
机译:给出了大量计算的结果,以便准确地描述Kuramoto-Sivashinsky方程到混沌的转变。特别地,遵循窗口中的振荡动力学,该窗口支持在混沌之前的周期倍增分叉的完整序列。跟随多达13个周期倍增,并用于计算级联的Feigenbaum数,因此首次实现了对无限系统的非线性系统的普遍性理论的精确数值评估。此外,处于混沌阈值的动力学表现出一种分形行为,该分形行为已得到证明并用于计算通用比例因子,该因子使溶液能够自相似地延续到混沌状态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号